Power Efficient adder Cell For Low Power Bio MedicalDevices

نویسندگان

  • V. Anandi
  • R. Rangarajan
  • M. Ramesh
چکیده

In this paper a new design of full adder cell based on Sense Energy Recovery concept using novel exclusive NOR gates is presented. Low-power consumption and delay are targeted in implementation of our design. The circuit designed is optimized for low power at 0.18-μm and 0.09 μm CMOS process technologies in full custom environment. The new circuit has been compared to the existing work based on power consumption, speed and power delay product (PDP). Cadence simulations show that the proposed adder can work more reliably at different range of supply voltage over a frequency of ranges. The Simulations carried out showed that the proposed adder design has 37.3% power savings capability over conventional 28-T CMOS adder at 200 MHz for a supply voltage of 1.1V with negligible area overhead. The proposed design has been used as the basic building block for column compression Dadda multipliers (CCDM) and found to be working successfully with high energy efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Low Power Full Adder Cell based on Carbon Nanotube FET for Arithmetic Units

In this paper, a full adder cell based on majority function using Carbon-Nanotube Field-Effect Transistor (CNFET) technology is presented. CNFETs possess considerable features that lead to their wide usage in digital circuits design. For the design of the cell input capacitors and inverters are used. These kinds of design method cause a high degree of regularity and simplicity. The proposed des...

متن کامل

Ultra-Low Cost Full Adder Cell Using the nonlinear effect in Four-Input Quantum Dot Cellular Automata Majority Gate

In this article, a new approach for the efficient design of quantum-dot cellular automata (QCA) circuits is introduced. The main advantages of the proposed idea are the reduced number of QCA cells as well as increased speed, reduced power dissipation and improved cell area. In many cases, one needs to double the effect of a particular inter median signal. State-of-the-art designs utilize a kind...

متن کامل

Low-Power Adder Design for Nano-Scale CMOS

A fast low-power 1-bit full adder circuit suitable for nano-scale CMOS implementation is presented. Out of the three modules in a common full-adder circuit, we have replaced one with a new design, and optimized another one, all with the goal to reduce the static power consumption. The design has been simulated and evaluated using the 65 nm PTM models.

متن کامل

Symmetrical, Low-Power, and High-Speed 1-Bit Full Adder Cells Using 32nm Carbon Nanotube Field-effect Transistors Technology (TECHNICAL NOTE)

Carbon nanotube field-effect transistors (CNFETs) are a promising candidate to replace conventional metal oxide field-effect transistors (MOSFETs) in the time to come. They have considerable characteristics such as low power consumption and high switching speed. Full adder cell is the main part of the most digital systems as it is building block of subtracter, multiplier, compressor, and other ...

متن کامل

Low power full adder design and power analysis

In this paper, various designs of low-power full-adder cell are studied. Simulation of these full-adder cells are carried out. The experiments simulate all combinations of input transitions and consequently determine the power consumption for the various full-adder cells. The simulation results highlight the weaknesses and the strengths of the various full-adder cell designs. The high performan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014